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1 Introduction

Among the types of auctions commonly used in practice, sealed-bid auctions
are a good practical choice because they require little communication or inter-
action between the participants. After each bidder submits a bid, the winner
is immediately determined. However, sealed-bid auctions require that the bids
be kept private until the auction clears. The increasing popularity of online
auctions only makes this disadvantage more troublesome. At an auction house,
with all participants present, it is difficult to examine a bid given directly to
the auctioneer. However, in an online auction the auctioneer is often little more
than a server with questionable security; and, since the seller and each of the
bidders are in different locations, one can anonymously attempt to break into
the server. In this paper, we present a game theoretic analysis of how bidders
should behave when they are aware of the possibility of cheating that is based
on knowledge of the bids prior to the closing of the auction.

We investigate this type of cheating along two dimensions: whether it is the
seller or a bidder who cheats (we assume that the auctioneer is honest), and
which variant (either first or second-price) of a sealed-bid auction is used. Note
that two of these cases are trivial. In our setting (formally defined below),
there is no incentive for the seller to submit a shill bid in a first price auction,
because doing so would either cancel the auction or not affect the payment
of the winning bidder. In a second-price auction, knowing the competing bids
does not help a bidder because it is dominant strategy to bid his valuation.
This leaves us with two cases that we examine in detail.

A seller can profitably cheat in a second-price auction by examining the bids
before the auction clears and submitting an extra bid. This possibility was
pointed out as early as the seminal paper [22] that introduced this type of
auction. For example, if the bidders in an eBay auction each use a proxy
bidder (essentially creating a second-price auction), then the seller may be
able to break into eBay’s server, observe the maximum price that a bidder is
willing to pay, and then extract this price by submitting a shill bid just below
it using a false identity. We assume that there is no chance that the seller will
be caught when it cheats. However, not all sellers are willing to use this power
(or, not all sellers can successfully cheat). We assume that each bidder knows
the probability with which the seller will cheat. In this setting, we derive an
equilibrium bidding strategy for the case in which each bidder’s value for the
good is independently drawn from an identical distribution (with no further
assumptions except for continuity and differentiability). This result shows how
first and second-price auctions can be viewed as the endpoints of a spectrum
of auctions.

But why should the seller have all the fun? In a first-price auction, a bidder



must bid below his value for the good (also called “shaving” his bid) in order
to have positive utility if he wins. To decide how much to shave his bid, he
must trade off the probability of winning the auction against how much he
will pay if he does win. Of course, if he could simply examine the other bids
before submitting his own, then his problem is solved: bid the minimum (up
to his valuation) necessary to win the auction. In this setting, our goal is to
derive an equilibrium bidding strategy for a non-cheating bidder who is aware
of the possibility that he is competing against cheating bidders. When bidder
values are drawn from the commonly-analyzed uniform distribution, we show
the counterintuitive result that the possibility of other bidders cheating has
no effect on the equilibrium strategy of an honest bidder. This result is then
extended to show the robustness of the equilibrium of a first-price auction
without the possibility of cheating. Finally, we explore other distributions,
including some in which the presence of cheating bidders actually induces an
honest bidder to lower its bid, and we provide sufficient conditions for this
effect to occur.

The rest of the paper is structured as follows. In Section 2 we formalize the
setting and present our results for the case of a seller possibly cheating in a
second price auction. Section 3 covers the case of bidders possibly cheating in
a first-price auction. In Section 4, we quantify the effects that the possibility
of cheating has on the expected revenue of an honest seller in the two settings.
We discuss related work, including other forms of cheating in auctions, in
Section 5, before concluding with Section 6. All proofs and derivations appear
in the appendix.

2 Second-Price Auction, Cheating Seller

In this section, we consider a second-price auction in which the seller may cheat
by inserting a shill bid after observing all of the bids. The formulation for this
section will be largely reused in the following section on bidders cheating in a
first-price auction. While no prior knowledge of game theory or auction theory
is assumed, good introductions can be found in [7] and [10], respectively.

2.1 Formulation

The setting consists of N bidders, or agents, (indexed by ¢ = 1,...,n) and
a seller. Each agent has a type 6; € [0,1], drawn from a continuous range,
which represents the agent’s independent private value for the good being auc-



tioned. ? Each agent’s type is independently drawn from a cumulative distri-
bution function (cdf) F over [0, 1], where F'(0) = 0 and F/(1) = 1. We assume
that F'(-) is strictly increasing and differentiable over the interval [0, 1]. Call
the probability density function (pdf) f(0;) = F'(6;), which is the derivative
of the cdf.

Each agent knows its own type 6;, but knows only the distribution F'(-) over
the possible types of the other agents. A bidding strategy for an agent b; :
[0,1] — [0,1] maps its type to its bid.? Let 6 = (61,---,6,) be the vector
of types for all agents, and 6_; = (01, ,0;_1,0;11,---6,) be the vector of
all types except for that of agent :. We can then combine the vectors so that
0 = (0;,0_;). We also define the vector of bids as b(0) = (b1(0,),...,b,(0,)),
and this vector without the bid of agent i as b_;(6_;). Let byj(#) be the value of
the highest bid of the vector b(f), with a corresponding definition for by (0—;).

An agent obviously wins the auction if its bid is greater than all other bids;
however, ties complicate the formulation. In our analysis, we can ignore the
case of ties because our continuity assumption makes them a zero probability
event in equilibrium. Also, we assume that the seller does not set a reserve
price. 4

If the seller does not cheat, then the winning agent pays the highest bid by
another agent. On the other hand, if the seller does cheat, then the winning
agent pays its bid, since we assume that a cheating seller would take full
advantage of its power. Let the indicator variable u¢ be 1 if the seller cheats,
and 0 otherwise. The probability that the seller cheats, P¢ is known by all
agents. We can then write the payment of the winning agent as follows.

pi(b(0), 1) = p° - bi(0;) + (1 — p°) - by (6-) (1)

Let p(+) be an indicator function that takes an inequality as an argument and
returns 1 if it is true, and 0 otherwise. The utility for agent i is zero if it does
not win the auction, and the difference between its valuation and its payment
if it does.

us(b(6),1%,0) = (5:0) > by(6-) ) - (6= mb(6).1)) (@)

2 We can restrict the types to the range [0, 1] without loss of generality because
any distribution over a different range can be normalized to this range.

3 We thus limit agents to deterministic bidding strategies. However, because of our
continuity assumption, there always exists a pure strategy equilibrium.

4 This simplifies the analysis, but all of our results can be applied to the case in
which the seller announces a reserve price before the auction begins.



We assume that each agent is risk-neutral, and thus aims to maximize its
expected utility, with the expectation taken over the types of the other agents
and over whether or not the seller cheats. By pushing the expectation inward
(and conditioning the payment term on the agent winning the auction), we
can write the expected utility as:

By, e [ui(b(0), %, 6,)] = Pmb(b,»(ei) > by (e_i)).

(6= Eooe[pit0(6).15) | (5(6) > by (6-) ]} 3)

Because of the uncertainty over the types of the other agents, we will be
looking for a Bayes-Nash equilibrium. A vector of bidding strategies b* is a
Bayes-Nash equilibrium if for each agent ¢ and each possible type 6;, agent
1 cannot increase its expected utility by using an alternate bidding strategy
b;, holding the bidding strategies for all other agents fixed. Formally, b* is a
Bayes-Nash equilibrium if the following expression holds.

Vi 0 B s (5100, ,00-0) 1,61 2

2.2 FEquilibrium

We first present the Bayes-Nash equilibrium for an arbitrary distribution F'(-).

Theorem 1 In a second-price auction in which the seller cheats with proba-
bility P¢, it is a Bayes-Nash equilibrium for each agent to bid according to the
following strategy:

N-1
T

Jo' FUP ) (z)da
- N—1

FCR)(6;)

b; (0;) = 0; ()

It is useful to consider the extreme points of P¢. Setting P¢ = 1 yields the
correct result for a first-price auction (see, e.g., [10]). In the case of P¢ = 0,
this solution is not defined. However, in the limit, b;(6;) approaches 0; as P°
approaches 0, which is what we expect as the auction approaches a standard
second-price auction.



The position of P¢is perhaps surprising. For example, the linear combination

foi FN=1) (g)dx e . .
b;(0;) = 0, — P2 ) of the equilibrium bidding strategies of first and

F(N_l) (02
second-price auctions would have also given us the correct bidding strategies
for the cases of P¢ = 0 and P = 1. However, it is not a symmetric equilibrium

bidding strategy for intermediate values of P°.

An alternative perspective on the setting is as a continuum between first and
second-price auctions. Consider a probabilistic sealed-bid auction in which
the seller is honest, but the payment of the winning agent is determined by a
weighted coin flip: with probability P¢ the payment is his bid, and with prob-
ability 1 — P¢ it is the second-highest bid. By adjusting P¢, we can smoothly
move between a first and second-price auction.

2.3  Special Case: Uniform Distribution

Another way to try to gain insight into Equation 5 is by instantiating the
distribution of types. We now consider the often-studied uniform distribution:

Corollary 2 In a second-price auction in which the seller cheats with proba-
bility P¢, and F(0;) = 6;, it is a Bayes-Nash equilibrium for each agent to bid
according to the following strategy:

N -1
b (0;) = ——0;
Z( ) N _ 1 + Pc
This equilibrium bidding strategy, parameterized by P¢, can be viewed as
an interpolation between two well-known results. When P¢ = 0 the bidding
strategy is now well-defined (each agent bids its true type), while when P¢ =1

we get the correct result for a first-price auction: each agent bids according to
the strategy b} (6;) = ~-16;.

3 First-Price Auction, Cheating Agents

We now consider the case in which the seller is honest, but there is a chance
that agents will cheat and examine the other bids before submitting their own
(or, alternatively, they will revise their bid before the auction clears). Since
this type of cheating serves no purpose in a second-price auction, we only
analyze the case of a first-price auction. After revising the formulation from
the previous section, we present a fixed point equation for the equilibrium
strategy for an arbitrary distribution F'(-). This equation will be useful for the



analysis of the uniform distribution, in which we show that the possibility of
cheating agents does not change the equilibrium strategy of honest agents. This
result then has implications for the robustness of the symmetric equilibrium
to overbidding in a standard first-price auction. Furthermore, we find that for
other distributions overbidding actually induces a competing agent to shave
more off of its bid.

3.1 Formulation

It is clear that if a single agent is cheating, he will bid (up to his valuation) the
minimum amount necessary to win the auction. It is less obvious, though, what
will happen if multiple agents cheat. One could imagine a scenario similar to
an English auction, in which all cheating agents keep revising their bids until
all but one cheater wants the good at the current winning bid. However, we
are only concerned with how an honest agent should bid given that it is aware
of the possibility of cheating. Thus, it suffices for an honest agent to know
that it will win the auction if and only if its bid exceeds every other honest
agent’s bid and every cheating agent’s type.

This intuition can be formalized as the following discriminatory auction. In
the first stage, each agent’s payment rule is determined. With probability P,
the agent will pay the second highest bid if it wins the auction (essentially,
he is a cheater), and otherwise it will have to pay its bid. These selections
are made independently and are recorded by a vector of indicator variables
u® = (p™, ..., pu), where u% = 1 denotes that agent i pays the second highest
bid. Each agent knows the probability P, but does not know the payment rule
for all other agents. After agents privately observe their respective payment
rules, the auction proceeds as a standard, sealed-bid auction. It is thus a
dominant strategy for a cheater to bid its true type, making this formulation
strategically equivalent to the setting outlined in the previous paragraph. The
expression for the utility of an honest agent in this discriminatory auction is
as follows, where the first term is the profit conditional on winning, and each
term in the succeeding product is the probability that agent ¢ has a higher bid
than agent 1.

w(b(0).11%,0) = (6.~ b(6) )
IT [ (50 > 05) + (1= ) - (ba(61) > ,06)| 0

J#



3.2 Equilibrium

Given that in equilibrium the cheating agents will bid according to their dom-
inant strategy, our goal is to find the symmetric bidding strategy for the hon-
est agents that completes the equilibrium. For the general case of an arbitrary
F(+), we were not able to derive a closed form solution for the honest agent’s
bidding strategy, and instead give a fixed point equation for it.

Theorem 3 In a first-price auction in which each agent cheats with proba-
bility P*, it is a Bayes-Nash equilibrium for each non-cheating agent i to bid
according to the strateqy that is a fixed point of the following equation:

3.3 Special Case: Uniform Distribution

In order to solve Equation 7, we return to the uniform distribution: F'(6;) = 6.
Recall the logic behind the symmetric equilibrium strategy in a first-price auc-
tion without cheating: bf(6;) = %Hi is the optimal tradeoft between increas-
ing the probability of winning and decreasing the price paid upon winning,
given that the other agents are bidding according to this strategy. Since in
the current setting the cheating agents do not shave their bids at all and thus
decrease an honest agent’s probability of winning (while obviously not affect-
ing the price that an honest agent pays if he wins), it is natural to expect
that an honest (risk-neutral) agent should compensate by increasing his bid.
The idea is that sacrificing some potential profit in order to regain some of
the lost probability of winning would bring the two sides of the tradeoff back
into balance. However, it turns out that the equilibrium bidding strategy is
unchanged.

Corollary 4 In a first-price auction in which each agent cheats with probabil-
ity P*, and F(0;) = 6,, it is a Bayes-Nash equilibrium for each non-cheating
agent to bid according to the strategy b} (0;) = %Qi.

This result suggests that the equilibrium of a first-price auction is particularly
stable when types are drawn from the uniform distribution, since the best
response is unaffected by deviations of the other agents to the strategy of
always bidding their type. In fact, as long as each other agent shaves its bid
by a fraction (which can differ across the agents) no greater than %, it is still



a best response for the remaining agent to bid according to the equilibrium
strategy.

Theorem 5 In a first-price auction where F(0;) = 0;, if each agent j # i bids

according a strategy b;(6;) = N_]lv+aj 0;, where ai; > 0, then it is a best response

for the remaining agent i to bid according to the strategy b;*(0;) = ~5—0;.

Note that this theorem applies to the case in which other agents are shaving
their bid by a negative fraction, and thus are irrationally bidding above their
type. Also, the condition for the theorem is tight, in the sense that if a; < 0
for a single agent j, then agent i’s best response is to shave its bid by a fraction

1
greater than .

While the strategy profiles of this theorem are not equilibria (except for the
case in which a; = 0), the result supports the predictive power of the symmet-
ric equilibrium. A common (and valid) criticism of equilibrium concepts such
as Nash and Bayes-Nash is that they are silent on how the agents converge on
a strategy profile from which no one wants to deviate. However, Theorem 5
tells us that the symmetric equilibrium strategy is a best response to a large
set of strategy profiles that are out of equilibrium, which makes it more plausi-
ble that each individual agent will choose to play according to the equilibrium
strategy.

3.4 Effects of Overbidding for Other Distributions

We now consider the effect of overbidding for distributions other than uni-
form. It is certainly the case that distributions can be found that support
the intuition given above that an agent should shave its bid less when other
agents are bidding their type. Examples include F/(6;) = —367 + 26, (the so-
lution to the system of equations: F”(6;) = —1, F/(0) =0, and F(1) = 1), and
F(f;) = =5

However, the robustness result of Theorem 5 is not unique to the uniform
distribution— it holds for all distributions of the form F(6;) = (6;), for k > 0.
More surprisingly, taking a simple linear combination of two such distributions
to produce F(6;) = o ;9" yields a distribution in which the best response for
the remaining agent is to shave its bid more than it does in equilibrium. The

same result also holds for the normalized exponential distribution F'(6;) =
efi—1
e—1 °

While we were not able to derive a general condition for the predicting the
direction of change, we were able to find sufficient conditions, based on the
function ¢(6;) = (F(é’l) /f (90) If g(-) is strictly increasing, and if its second



derivative is monotonic, then the sign of the second derivative is the direction
of change.

Theorem 6 In a first-price auction, if ¢'(6;) > 0 and ¢"(0;) < 0 (resp.
g"(0;) =0, ¢"(0;) > 0) hold for all 6;, where g(6;) = ?((g;)), and if each agent
J # i bids according the strategy b;(0;) = 0;, then, for all 6; > 0, the best
response bidding strategy b(0;) for agent i is strictly less than (resp. equal to,

strictly greater than) the symmetric equilibrium bidding strategy b} (0;).

Note that this theorem applies to all of the distributions mentioned above.

4 Revenue Loss for an Honest Seller

In both of the settings we covered, an honest seller suffers a loss in expected
revenue due to the possibility of cheating. The equilibrium bidding strategies
that we derived allow us to quantify this loss. Although this is as far as we will
take the analysis, we note that it could be applied to more general settings,
in which the seller could, for example, choose the market in which he sells his
good or pay a trusted third party to oversee the auction.

In a second-price auction in which the seller may cheat, an honest seller suffers
due to the fact that the agents will shave their bids out of fear that he will
cheat. For the case in which agent types are drawn from the uniform distribu-
tion, every agent will shave its bid by #_ipc, which is thus also the fraction
by which an honest seller’s revenue decreases due to the possibility of cheating.

Analysis of the case of a first-price auction in which agents may cheat is not as
straightforward. If P* = 1 (each agent cheats with certainty), then the setting
is equivalent to a standard second-price auction, and the seller’s expected
revenue will be unchanged. Again considering the uniform distribution for
agent types, it is not surprising that P* = % causes the seller to lose the most
revenue. However, even in this worst case, the percentage of expected revenue
lost is significantly less than it is for the second-price auction in which P¢ = %,
as shown in Table 1.° It turns out that setting P¢ = 0.2 would make the
expected loss of these two settings approximately equal. While this comparison
between the settings is unlikely to be useful for a seller, it is interesting to
note that, at least for the case of the uniform distribution, agent suspicions of
possible cheating by the seller are in some sense worse than agents actually

cheating themselves.

> Note that we have not considered the costs of the seller. Thus, the expected loss
in profit could be much greater than the numbers that appear here.
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Percentage of Revenue lost for an Honest Seller
Agents | Second-Price Auction First-Price Auction
(P¢=0.5) (P*=10.5)

2 33 12

5 11 4.0

10 5.3 1.8

15 4.0 1.5

25 2.2 0.83

50 1.1 0.38
100 0.50 0.17

Table 1

The percentage of expected revenue lost by an honest seller due to the possibility
of cheating in the two settings considered in this paper. Agent valuations are drawn
from the uniform distribution.

5 Discussion and Related Work

The work most closely related to our first setting is [20], which also presents
a model in which the seller may cheat in a second-price auction. In their
setting, the seller is a participant in the Bayesian game, and he decides between
running a first-price auction (where profitable cheating is never possible) or
a second-price auction. The seller makes this choice after observing his type,
which is his probability of having the opportunity and willingness to cheat in a
second-price auction. The bidders, who know the distribution from which the
seller’s type is drawn, then place their bid. It is shown that, in equilibrium,
only a seller with the maximum probability of cheating would ever choose to
run a second-price auction. Our work differs in that we focus on the agents’
strategies in a second-price auction for a given probability of cheating by the
seller. An explicit derivation of the equilibrium strategies then allows us relate
first and second-price auctions.

In the same paper, another model of seller cheating is studied. The setting
consists of repeated second-price auctions in which the seller decides, in each
auction, whether to cheat. The bidders assume that the seller is honest until he
is caught cheating, after which they assume that the seller always cheats. An-
other paper by Rothkopf [19] discusses a form of agent cheating in sealed-bid
auctions that also gives rise to auctions that lie between first and second-price
auctions. Specifically, agents may submit multiple bids, and then withdraw
bids after all of the bids are opened.

Also, a special case of our robustness result for a first-price auction was inde-
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pendently derived by [21], using a different analysis. The focus of that paper
was on the maxmin strategy, the strategy that guarantees the agent the high-
est expected payoff over the space of all possible strategies of the remaining
agents. One of the settings considered was a first-price auction in which the
agent types are drawn from the uniform distribution. When it is assumed that
the competing agents will not play according to a dominated strategy, the
payoff of the remaining agent is minimized when each competing agent bids
its valuation. Since this is equivalent to the case in our setting in which all
other agents are cheating, the maxmin strategy for an agent is to bid according
to the symmetric equilibrium bidding strategy.

A different model of bidder cheating was considered in [2] for a multi-unit
reverse auction setting. In their model, each bidder privately knows both his
cost function and his “trustworthiness”, which can be interpreted as his prob-
ability of delivery. They present an auction under which it is dominant strat-
egy for each bidder to bid truthfully along both dimensions. The key to this
auction is the fact that the payment to the winning bidder is based on the
declared trustworthiness of the second-highest bid. A similar incentive com-
patible mechanism was presented in [16] for a task allocation setting in which
each bidder has a privately-known cost of attempting and probability of suc-
cessfully completing each task.

Work more generally related to ours includes analyses of various forms of col-
lusion. Results on collusion in first and second-price auctions can be found in
[12] and [8], respectively. Further opportunities for collusion exist when mul-
tiple goods are auctioned. For example, in a simultaneous ascending auction,
bidders can encode signals in their bids in order to implicitly collude with
other bidders not to compete for the same sets of goods, which occurred in
an FCC spectrum auction [5]. Also, in a combinatorial auction, a bidder can
profit from bidding under multiple identities, whereby he essentially colludes
with himself [23].

An area of related work that can be seen as complementary to ours is that
of secure auctions, which takes the point of view of the auction designer. The
goals often extend well beyond simply preventing cheating, including prop-
erties such as anonymity of the bidders and nonrepudiation of bids. Crypto-
graphic methods are the standard weapon of choice here (see, e.g., [3,6,14,15]).
An alternative use of cryptography, proposed in [1], is to bind the online iden-
tity of each participant to a single digital certificate. Then, a bidder or seller
who is caught cheating can either be punished or made to suffer a permanent
loss of reputation.

Existing work covers another dimension along which we could analyze cheat-

ing: altering the perceived value of N. In this paper, we have assumed that N
is known by all of the bidders. However, in an online setting this assumption is

12



rather tenuous. For example, the seller could arbitrarily increase the perceived
N by registering for the auction under different identities. In a first-price auc-
tion, the seller has an incentive to do so in order to induce agents to bid closer
to their true valuation ¢. However, if agents are aware that the seller has this
power, then any communication about N to the agents is “cheap talk”, and
furthermore is not credible. Thus, in equilibrium the agents would ignore the
declared value of N, and bid according to their own prior beliefs about the
number of agents. If we assume a common prior, then the setting reduces to
the one tackled by [9], which derived the equilibrium bidding strategy of a
first-price auction when the number of bidders is drawn from a known distri-
bution but not revealed to any of the bidders. Instead of assuming that the
seller can always exploit this power, we could assume that it can only do so
with some probability that is known by the agents. The analysis would then
proceed in a similar manner as that of our cheating seller model.

The other interesting case of this form of cheating is by bidders in a first-price
auction. Bidders would obviously want to decrease the perceived number of
agents in order to induce their competition to lower their bids. While it is
unlikely that bidders will be able to alter the perceived N arbitrarily, collusion
among a group agents in which only one member of the group participates in
the auction provides an opportunity to decrease the perceived N. While the
non-colluding agents would account for this possibility, as long as they are not
certain of the collusion they will still be induced to shave more off of their bids
than they would if collusion were not possible. This issue is tackled in [11].

Modifying other assumptions of our setting provides an opportunity for future
work. For example, instead of risk-neutral bidders, one can consider risk-averse
or risk-seeking bidders. Also, the assumption of independent private values is
an important one, and the cases of affiliated and common-value (see, e.g., [13]
and [4], respectively) should also be considered. Finally, the setting could be
extended so that the auctioneer also may cheat, possibly forming collusive
agreements with bidders or the seller.

6 Conclusion

In this paper we presented the equilibria of sealed-bid auctions in which cheat-
ing is possible. In addition to providing strategy profiles that are stable against
deviations, these results give us with insights into both first and second-price
auctions. The results for the case of a cheating seller in a second-price auc-

6 This assumes that a larger perceived N, and a corresponding lower perceived
probability of winning the auction, does not affect an agent’s decision of whether
or not to bid (due to, for example, the cost of determining its valuation)

13



tion allow us to relate the two auctions as endpoints along a continuum. The
case of agents cheating in a first-price auction shows the robustness of the
first-price auction equilibrium when agent types are drawn from the uniform
distribution. We also explored the effect of overbidding on the best response
bidding strategy for other distributions, and provided sufficient conditions for
predicting the direction of this effect. Finally, results from both of our set-
tings allowed us to quantify the expected loss in revenue for a seller due to
the possibility of cheating.

A Proofs

Theorem 1 In a second-price auction in which the seller cheats with proba-
bility P¢, it is a Bayes-Nash equilibrium for each agent to bid according to the
following strategy:

N—-1
C

g WO @)

FCF)(6;)

b; (0:) (A1)

Proof:

To find an equilibrium, we start by guessing that there exists an equilibrium
in which all agents bid according to the same function b;(6;), because the
game is symmetric. Further, we guess that b;(6;) is strictly increasing and
differentiable over the range [0, 1]. We can also assume that b;(0) = 0, because
negative bids are not allowed and a positive bid is not rational when the
agent’s valuation is 0. Note that these are not assumptions on the setting-
they are merely limitations that we impose on our search. The fact that we
find an equilibrium that satisfies them shows that are indeed valid.

Let ®; : [0,b;(1)] — [0, 1] be the inverse function of b;(6;). That is, it takes a
bid for agent ¢ as input and returns the type 6; that induced this bid. Recall
Equation 3:

Ey_, e |us(b(0), 1%, 6,)| = Prob(b;(6:) > by (6-,))-
(8= Eo_ope pi(0(6).4) | (06) > by (6-1) ) )

The probability that a single other bid is below b;(6;) is equal to the cdf at the
type that would induce a bid equal to b;(6;), which is formally expressed as
F(®;(b;(0;))). Since all agents are independent, the probability that all other
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bids are below agent i’s is simply this term raised the (N — 1)-th power. Thus,
we can re-write the expected utility as:

By pe [ui(b(0), 1%, 03)] = FN=(3(b:(05)))-
(6= o [p00), 1) | (06 > b10(0-9)] ) (A2)

We now solve for the expected payment. Plugging Equation 1 (which gives the
price for the winning agent) into the term for the expected price in Equation
A.2, and then simplifying the expectation yields:

pdf (%](9—0 | (b:(6:) > b[l](e—i))>db[1](9—i)] (A.3)

Note that the integral on the last line is taken up to b;(6;) because we are con-
ditioning on the fact that b;(6;) > bpy(0—;). To derive the pdf of buj(6—;) given
this condition, we start with the cdf. For a given value bpyj(6—;), the probability
that any one agent’s bid is less than this value is equal to F'(®;(bpj(6—;))). We
then condition on the agent’s bid being below b;(6;) by dividing by F(®;(b;(6;))).
The cdf for the N —1 agents is then this value raised to the (N — 1)-th power.

cdf [bm(en | (bi(6:) > bm(ei)ﬂ _ FFN_%:)([; <(g;)>)>>

The pdf is then the derivative of the cdf with respect to by (0-;):

pdf {b[l] (0-3) | (bi(ei) > by (9—z>):|
N—-1 N—2 ’
- FN=1(®;(b;(6,))) - (q)i(b[ll(efi))) : f(@i(b[l](e,i))) ) q’i(b[ﬂwﬂ‘))

(2
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Substituting the pdf into Equation A.3 and pulling terms out of the integral
that do not depend on by;(0_;) yields:

Eooye pi(b(6).5) | (060) > by (6-1) )| = P=- i (6)+

(1—P¢) - (N—=1) b6 s
FN=(D;(bs(0:))) /0 (b[l](9i>'F (D3 (bpj (0-:)))-

F(@i(bpy(0-4))) - @5(bpy (L’))) dbpy(0-;)

Plugging the expected price back into the expected utility equation (A.2), and
distributing FN=1(®;(b;(6;))), yields:

EG,i,,uc {uz(b(e)auc79)} = FN?l( (b (9’L>>> 9 -
FN1(@,(bi(6:))) - P° - bi(6:)—
b(6
(1= P9). (N — [ ( ) - N2, (b (6_,)))-

£y (6-))) - @b (0-0)) ) iy (6-)

We are now ready to optimize the expected utility by taking the derivative
with respect to b;(6;) and setting it to 0. Note that 6; is not variable at this
point in the proof- we are finding the bid b;(#;) that maximizes expected
utility for any given 6;. Note also that we do not need to solve the integral,
because it will disappear when the derivative is taken (by application of the
Fundamental Theorem of Calculus).

0= (N — 1) FY72(®;(bi(6:))) - f(Pi(bi(6:))) - @;(bi(8y)) - 0~
FY=H(@4(bi(6:))) - P~
Pe (N = 1) - FY72(@(0y(67))) - f(@a(bi(6:))) - 5(bi(6:) - bi(6:)—

(1= P%) - (N = 1)+ (bi(0:) - FY72(@i(0i(6:)) - f(Pi(bi(6:))) - P(0s(6:))

Dividing through by FY=2(®;(b;(6;))) and combining like terms yields:
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0= (6= P00 — (1= P)-bi0)) - (N =)

@ 0i(0:)) - @0(6))] = P F(@u(0:(61))

Simplifying the expression and rearranging terms produces:

P F(D(bi(6:)))
(N —1)- f(Di(bs(6;))) - Pi(bs(6:))

Note that from this point on, we treat #; as a variable. Since the above steps
for optimizing b;(6;) apply regardless of the actual value of 6;, we are implic-
itly performing this same optimization for all possible values of ; and then
aggregating the results into a single function b;(6;).

To further simplify, we use the formula f’(x) = m, where g(z) is the in-

verse function of f(x). Plugging in function from our setting gives us: ®%(b;(6;)) =

7 (191-)' Applying both this equation and ®;(b;(6;)) = 6; yields:

P F(8) -6
(N —1)- ()
While we are not able to derive a solution directly, this equation allows us to

quickly verify a guessed solution that is based on the solution for the first-price
auction (see, e.g., [18]).

bi(0;) = 0;

(A.4)

N—-1

J& PCR) (1) da
To verify that this is indeed the solution, we first take its derivative:
o) — 1 FE0) = S PO 00 - f(0) - i PO (@)da
0 =1 FE52)(6,)
This simplifies to:
N f(8:) - Jo O (@) da
b;(ei) == : N .

F( p‘cl+1)(9i)
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We then plug this derivative into the equation we derived (A.4):

P @) (0 - Jy FUR ) (w)de

bi(0:) = 6 (N —1)- f(6;) - FE+0(0;)

Cancelling terms yields Equation A.5, verifying that our guessed solution is
correct. 0O

Corollary 2 In a second-price auction in which the seller cheats with proba-
bility P¢, and F(0;) = 6;, it is a Bayes-Nash equilibrium for each agent to bid
according to the following strategy:

. N-1
i) = N1

Proof:

Plugging F'(6;) = 60; into Equation A.1 (repeated as A.5), yields:

0; N—1 Pe bérpc
bi(6;) = 60; — Jo' 2 de g _ No1iPe )
no ‘ 0,5 ! 9,7

B pPe . N-1

7 7 _791
N—1+Ppc N —1+ Pe

Theorem 3 In a first-price auction in which each agent cheats with proba-
bility P*, it is a Bayes-Nash equilibrium for each non-cheating agent i to bid
according to the strategy that is a fixed point of the following equation:

. (N-1)
o (P PO @) + (1= P F@)) - da

(Pa - F(b;(0;)) + (1 — P2) - F(HZ-)>(N_1)

Proof:

We make the same guesses about the equilibrium strategy to aid our search
as we did in the proof of Theorem 1. When simplifying the expectation of
this setting’s utility equation (6), we use the fact that the probability that
agent ¢ will have a higher bid than another honest agent is still F'(®;(b;(6;))),
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while the probability is F'(b;(6;)) if the other agent cheats. The probability
that agent ¢ beats a single other agent is then a weighted average of these two
probabilities. Thus, we can write agent ¢’s expected utility as:

Ey_ e [ui(b(0), . 6;)]

= (0= 000) - [P F®i(6) + (1= P2) - F@i(0i(00)

N-1

As before, to find the equilibrium b;(6;), we take the derivative with respect
to b;(0;) and set it to zero:

0=[(6-00)) - (% 1) (P F00)) + (- P F@b0)))
(P £(0u(0) + (1 = P F(@:(0i(61))) - 0 6)) | -
(P F002) + (= P FE@000))
Aggregating this result over all possible values of ; (which is now a variable),

applying the equations ®%(b;(0;)) = b/_(l(}) and ®;(b;(0;)) = 6;, and dividing
through, produces: '

In this setting, because we leave F(-) unspecified, we cannot present a closed
form solution. However, we can simplify the expression by removing its de-
pendence on b;(6;).
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i (P POy + 0 P F@) e

— (A7)
(Pa CF(0:(6)) + (1 — Po) - F(Oi)>

To verify Equation A.7, first take its derivative with respect to 6;:

(N-2)
50 =1 = [1= (V= 1) (P2 F0u(0) + (1 = P) - F @)

(P S0 - bi(6) + (1= P) - (61) )

This equation simplifies to:

0 = (V= 1) (P 000) - ¥(00) + (1 = P) - 160 )

(N-1)
S <P“ F(by(x)) + (1— P). F(g:)) ’

(Pe- FOu(0) + (1= P F(@-))N

Plugging this equation into the b;(6;) in the numerator of Equation A.6 yields
Equation A.7, verifying the solution. O

Corollary 4 In a first-price auction in which each agent cheats with probabil-
ity P*, and F(6;) = 6,, it is a Bayes-Nash equilibrium for each non-cheating
agent to bid according to the strategy bl (0;) = %01-.

Proof:

Instantiating the fixed point equation (7, repeated as A.7) with F(6;) = 6,
yields:




We can then plug the strategy b;(0;) = %61- into this equation in order to
verify that it is a fixed point.

bi(ei) = 0; i (N-1)
(Pa ~ 0+ (1—P2) -0i>
0 S (=1 g 9 oY N—lg
— Y 0§N-1) — Vi 91(1\/_1) - N ¢
O

Theorem 5 In a first-price auction where F(0;) = 0;, if each agent j # i bids

according a strategy b;(0;) = N }VJr% 8;, where oi; > 0, then it is a best response

for the remaining agent i to bid according to the strategy bl(6;) = Y= 19

Proof:

We again use ®; : [0,b; ( )] — [0,1] as the inverse of b;(6;). For all j # i in

this setting, ®;(z) = 7= 1 Noiga; T The probablhty that agent ¢ has a higher bid

than a single agent j is F(CD (b1(6,))) = 7= 1+ -b1(0;). Note, however, that
since @;(-) is only defined over the range [0, b;(1 )], it must be the case that
bf(1) < b;(1), which is why a; > 0 is necessary, in addition to being sufficient.
Assuming that bf*(6;) = =16;, then indeed ®;(b7(6;)) is always well-defined.
We will now show that this assumption is correct. The expected utility for
agent ¢ can then be written as:

Ey_ [ui((b(0:),0-4(0-1)), 6:)] = [H#ijv_]fwa(ei)} : {ei —~ bﬁ(e)}

o) o (o)™ - )

Taking the derivative with respect to b%(6;), setting it to zero, and dividing

out 15— 1 a ylelds

(N-1)

0=6-(N—1)- (bﬁ(eg)w_” _N. (bf(ei))

This simplifies to the solution: bf(6;) = £=16;. O
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Theorem 6 In a first-price auction, if ¢'(0;) > 0 and ¢"(6;) < 0 (resp.
g"(0;) = 0 and ¢"(0;) > 0) hold for all 0;, where g(6;) = 1;((31)), and if each
agent j # i bids according the strategy b;(0;) = 0;, then, for all 6; > 0, the
best response bidding strategy bX(0;) for agent i is strictly less than (resp. equal
to, strictly greater than) the symmetric equilibrium bidding strategy b} (0;).

Proof: We will only show the proof of the first case (that b%(6;) < b:(6;) if
g"(0;) < 0), and point out the places in which the proof changes for the other
two cases.

The expected utility for agent ¢ when each other agent always bids its type is:

Eo_,[ua( (BF(60),b-4(6-0), 6] = POV (bE(00) - (6, — 001 )

Taking the derivative with respect to b7 (6;):

d

(g Eo-s [ (058, 6-5(6-,)), 6)

}
— (N = 1) FOD000) - £071(6)) - (6 - b8 ) — FYD(6E(6)

= FYD00(8)) - FOR©)) - [(V = 1)« (6= b1(61)) — g6£(6)

Setting the derivative to zero, the best response bidding strategy must satisfy
bE(0) = 0; — w (note that f(bf(6;)) cannot be zero because of the as-
sumption that F'(-) is strictly increasing). Due to the condition that ¢'(6;) > 0,
this equation has only one solution. Thus, it suffices to check that the deriva-
tive is negative (resp. equal, positive for the other two cases) when we set the
best response bidding strategy equal to the symmetric equilibrium bidding
strategy. Thus, we make the substitution b7(6;) = b7(;) and check that the
following inequality holds:

. N-1
fel F(T)(m)dz

Plugging the symmetric equilibrium bidding strategy b} (6;) = 6;—=°
into the RHS yields:

N—-1
FUP) ()
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(0. Oi p(N-1)
N-1 FO1(6,)

*(0. 0;

— 0

Because both sides are 0 at 6; = 0, it suffices to check that the LHS has a
larger first derivative than the RHS.

Py LD i) P20, 1(61) - 9 516) > FY(0)

N—-1 d@(
(b1(6) [, F*V0(0) = (N = 1) - FN2(0) - f(6) - Jo FN¥ D (a)de
FO) 57 |1 FENT)(3)) i
f(0:) - g(b7(0;)) > F(6;)
0 F(N-D) (1) d |
J101000) - e ™ o)) > 0

0; (N_1)$ r
SO P ™ > 9(6) ~ 90)

By the Mean Value Theorem, we know that there exists some value x satisfying
b (0;) < x < 6;) such that:

g'(x) - (0; = bj (6:)) = 9(6:) — g(b;(6:))

This equation, together with the fact that ¢”(6;) < 0 (resp. ¢”(6;) = 0 and
g"(0;) > 0), implies the above inequality, completing the proof.

g'(0;(6:)) - (0: — b; (6:)) > g(6:) — g(b(6:))

0; N=1) ()
IO gy ) > 9060  a(6)
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