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Abstract
Computational pool is a relatively recent entrant into the
group of games played by computer agents. It features a
unique combination of properties that distinguish it from oth-
ers such games, including continuous action and state spaces,
uncertainty in execution, a unique turn-taking structure, and
of course an adversarial nature. This article discusses some
of the work done to date, focusing on the software side of the
pool-playing problem. We discuss in some depth CueCard,
the program that won the 2008 computational pool tourna-
ment. Research questions and ideas spawned by work on this
problem are also discussed. We close by announcing the 2011
computational pool tournament, which will take place in con-
junction with the Twenty-Fifth AAAI Conference.

Introduction
Cue sports have been captivating humankind for thousands
of years, with written references dating to the first century
A.D. They evolved as a branch of modern croquet and golf,
as a kind of indoor table version, and much of the mod-
ern nomenclature can be traced back to that common root.
Cue sports today are vastly popular, and comprise variations
such as pool, billiards, carom, snooker, and many other lo-
cal flavours. In a 2005 U.S. survey, pool ranked as the eighth
most popular participation sport in that country, with over 35
million people playing that year. Leagues and tournaments
exist in nearly every country worldwide, with strong appeal
to both experienced and casual players alike.

A number of robotic cue-players have been developed
over the years. The first such system was The Snooker Ma-
chine from University of Bristol, U.K. in the late 1980’s
(Chang 1994). This system comprised an articulated ma-
nipulator inverted over a 1/4-sized snooker table. A sin-
gle monochrome camera was used to analyze the ball po-
sitions, and custom control and strategy software was de-
veloped to plan and execute shots. The system was re-
ported to perform moderately well, and could pot simple
shots. Since then, there have been a number of other at-
tempts at automating pool, including (Alian et al. 2004;
Lin, Yang, and Yang 2004).

Developing a complete robotic system that can be com-
petitive against an accomplished human player is a signifi-
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cant challenge. The most recent, and likely most complete
system to date, is Deep Green from Queen’s University,
Canada (Greenspan et al. 2008), shown in Figure 1. This
system uses an industrial gantry robot ceiling-mounted over
a full-sized pool table. High resolution firewire cameras are
mounted on both the ceiling to identify and localize the balls,
and on the robotic wrist to correct for accumulated error and
fine tune the cue position prior to a shot. This system has
been integrated with the physics simulator used in the com-
putational pool tournaments, and the strategy software de-
veloped to plan shots. Complex shots have been effectively
planned and executed, including combination shots, and the
system plays at an above-amateur level.

In addition to full automation of cue sports, there have
been attempts to apply technology to aid in training and
analysis, including a vision system to analyze televised
snooker games (Denman, Rea, and Kokaram 2003). The
Automatic Pool Trainer from the University of Aalborg
(Larsen, Jensen, and Vodzi 2002) makes use of a vision
system and a steerable laser pointer. Once the static ball
positions have been located by the vision system, the laser
pointer is used to identify cue aiming positions that would
lead to successful shots. A similar system, called "Mixed
Reality Pool", is being pursued at Pace University in the U.S.
(Hammond 2007).

Pool presents an interesting challenge for AI even absent
a robotic component. It features a unique combination of
properties:
• infinite state and action spaces
• varying execution skill (i.e., control uncertainty)
• complete observability of play but not of execution skill
• turn taking with state-dependent turn transfer
• and, of course, an adversarial nature.

After a few early investigations, the computational study
of strategy in the game of pool was given a major boost
with the advent of the first computational pool tournament,
held in 2005 as part of the International Computer Olympiad
(Greenspan 2005). The tournament was then repeated in
2006 (Greenspan 2006) and 2008.

The game played in all computer pool competitions to
date has been 8-ball, based on the official rules of the Bil-
liards Congress of America (1992). 8-ball is played on a



Figure 1: The Deep Green pool-playing robot

rectangular pool table with six pockets which is initially
racked with 15 object balls (7 solids, 7 stripes, and one 8-
ball), and a cue ball (see figure 2). Play begins with one
player’s break shot. If a ball is sunk on the break shot, then
the breaking player keeps his or her turn, and must shoot
again. Otherwise, the other player gets a chance to shoot.

For a post-break shot to be legal, the first ball struck by the
cue ball must be of the shooting player’s side, and the cue
ball must not enter a pocket itself. The first ball legally pock-
eted after the break determines the side (solids or stripes) of
each player. Until this occurs, the table is open, meaning
that both solid balls and striped balls are legal targets for
either player. Players retain their turn as long as they call
(in advance) an object ball of their side and a pocket, and
proceed to legally sink the called ball into the called pocket.
Following an illegal shot, the opponent gets ball-in-hand.
This means that they can place the cue ball anywhere on the
table prior to their shot. After all object balls of the active
player’s side have been sunk, that player must then attempt
to sink the 8-ball. At this point, calling and legally sinking

Figure 2: Computational pool table with balls racked for 8-
ball

the 8-ball wins the game.
The computational pool tournaments are based on a

client-server model where a server maintains the state of a
virtual pool table and executes shots sent by client software



agents on the POOLFIZ physics simulator (Greenspan 2006).
Each agent has a 10 minute time limit per game to choose
shots.

A shot is represented by five real numbers: v, ϕ , θ , a, and
b, which are depicted graphically in figure 3. v represents
the cue velocity upon striking the cue ball, ϕ represents the
cue orientation, θ represents the angle of the cue stick above
the table, and a and b designate the horizontal and vertical
offsets of the cue impact point from the center of the cue
ball. The location of this point, where the cue stick stikes
the cue ball, plays a big role in imparting spin, or “english",
to the cue ball. ϕ and θ are measured in degrees, v in m/s,
and a and b are measured in millimeters. Since the physics
simulator is deterministic, and in order to simulate less than
perfect skill, Gaussian noise is added to the shot parameters
on the server side. The result of the noisy shot is then com-
municated back to the clients. The ICGA tournament’s noise
model was a zero-mean Gaussian distribution with standard
deviations of σθ = 0.1, σϕ = 0.125, σV = 0.075, σa = 0.5,
σb = 0.5.

Figure 3: Computational pool shot parameters

The initial approaches explored for the computational
pool tournaments varied significantly among competitors,
including, for example, an optimization-based method that
simulated human position play (Landry and Dussault 2007)
a knowledge-based approach, and Monte Carlo search-tree
methods (Leckie and Greenspan 2007). The technique that
dominated the first two tournaments was based upon a vari-
ation of a search-tree method that performed look-ahead
by three shots on a discretized version of the search space
(Smith 2006). The following section describes in detail the
program that won the most recent competition, in 2008, and
various research it spawned. The final section includes a
discussion of the future of computational pool and a Call for
Participation in the next computational pool championships,
slated to take place as part of AAAI in 2011.

The story of a program
In this section we will explore in more depth the setting of
computational pool. We will do this by telling the story of
the Stanford Computational Billiards group, our experience
with computational pool, and by sharing some insights we
have gained throughout this process.

Models and beginnings
Our first exposure to computational pool came at the AAAI
conference in 2006. Michael Smith presented a paper (Smith
2006) describing the setting of computational pool and the
agent PickPocket, which had won the 2005 computational
pool tournament. His presentation caught our interest and
sparked a desire to explore this intriguing new domain and
to compete in the next tournament.

One of our initial questions concerned the value of game-
theoretic reasoning to a computational pool agent’s design.
Most tournaments involving computer agents end up not us-
ing game-theoretic analysis. A few exceptions are the game
of chess, if alpha-beta pruning and other similar techniques
are considered as game-theoretic, and poker, where the equi-
librium of an abstract version of the game is explicitly com-
puted. Certainly a prerequisite for determining whether such
analysis can prove fruitful in a new domain is to have a
model to analyze, and finding such a model became our first
goal.

Investigation quickly revealed that there was no existing
model which cleanly captured the game of pool. Other game
models existing in the literature had some similar qualities,
but also were either missing critical features or contained
extraneous features which needlessly complicated analysis.
In order to reason about pool games, we introduced a model
specifically tailored to representing pool games (Archibald
and Shoham 2009). With some reasonable assumptions
about the game components, we showed the existence of an
equilibrium. This equilibrium is a stationary equilibrium,
which means that players’ equilibrium strategies do not de-
pend on the history of the game, only the current table state.

Given this preliminary game-theoretic understanding of
pool, our focus switched to the practical problem of design-
ing a software agent capable of winning the next computa-
tional pool tournament.

Design Challenges
One of the most striking features of cue sports is their con-
tinuous action space. Most other games that have been the
subject of much study and research, such as chess, checkers,
go, etc., feature finite action spaces. Because of the con-
tinuous nature of the available actions, there are an infinite
number of actions that can be attempted from any given ta-
ble state. The game also features actions taken in sequence,
which seems to reward planning ahead. One of the funda-
mental design challenges we faced was trading off depth and
breadth of search. Is it better to spend more time experi-
menting with shots from the initial table state, or should we
search and plan ahead in our attempt to run the table?

Another design question we faced involved dealing with
the opponent. Specifically, how much should our agent rea-
son about or notice its opponent? In theory, it seems clear



that such considerations could make a big difference to the
performance of an agent in actual matches. In practice,
though, at the noise levels of the tournament, our agent was
able to win nearly 70% of the time off the break (i.e. run the
table). These wins occur regardless of who the opponent is.
Thus, at the noise levels of the 2008 ICGA tournament, there
was relatively little to be gained be adding extensive consid-
eration of the opponent. This led us to only consider the
opponent when no suitable shot can be found from a given
state, at which point defensive strategies are invoked.

Computational pool agent design
In this section we describe our computational pool agent,
CueCard, and discuss how it selects a shot for execution
given a typical table state. We will also briefly mention what
is done in atypical situations.

Given a table state, our agent proceeds as shown in Fig-
ure 5. First, interesting aiming directions (ϕ values) are cal-
culated. This is done geometrically, and each direction is
chosen in order to accomplish one of several goals. Direc-
tions for straight-in shots (where the object ball goes directly
into the pocket), more complex shots with multiple ball-ball
or ball-rail collisions, and special shots designed to disperse
clusters of balls are all calculated. A shot is simulated with-
out noise in each of these directions. If this shot successfully
pockets a ball, then it is kept for further processing. For each
of these successful shots, we discretize v and randomly vary
the other parameters (a, b, θ ) to generate a variant shot in the
desired direction. Each of these variant shots, if successful
without noise, is simulated n times with noise added. The
resulting state of each noisy simulation is scored using an
evaluation function. This function uses a look up table to es-
timate the difficulty of the remaining straight-in shot oppor-
tunities in the resulting state for the current player. The value
of a specific state is equal to 1 ∗ p1 + 0.33 ∗ p2 + 0.15 ∗ p3,
where pi is the success probability of the i-th most probable
straight-in shot. The value of a specific shot is the average
value of the states which resulted from the n noisy simu-
lations of the shot. This process of generating, simulating,
and evaluating variant shots continues until a predetermined
amount of time has elapsed.

The top k of all shots that were evaluated are retained
for further examination. To refine the evaluation of these
k shots, another level of search is performed beginning from
the states which resulted from the n noisy simulations of
each of the k shots. Shot directions are again generated,
and random variations of successful shots are simulated with
noise. The average resulting state evaluation of the best shot
from a given state is used as the new score for that state.
After this second level of search is completed, we then re-
calculate the score for each of the k shots, using the new
values generated from the second level of search. The shot
with the highest overall score is selected for execution.

If the score for the selected shot does not exceed some
threshold, then CueCard instead generates a defensive last
resort shot. For this shot we consider only straight-in shot
directions from the original table position. These shots are
now evaluated based on the resulting position for us and the
position for the opponent. The goal is to leave the opponent

in a bad position if we miss, and us in a good position if we
make the shot.

Figure 4: A typical post break table state

The break shot is not generated in this same manner, but
instead is always the same and was the result of extensive
offline search. The goal of this offline search was to find a
break shot which kept the turn by sinking a ball, and also
spread the balls out fairly evenly over the table. The shots
which did best at each of these tasks were very poor at the
other. For example, a break shot which sunk a ball 98% of
the time also left the other balls in their racked position. A
break shot which spread the balls out completely only suc-
ceeded in sinking a ball 64% of the time. These two goals
are very interrelated. For example, if CueCard retains the
shot but is then forced to break up a cluster of balls on its
second shot, it has a high chance of losing the turn after the
second shot. On the other hand, if the break shot spreads out
the balls and gives up the turn, the opponent has been given
the turn and a very easy table state. We found a compromise
break shot which succeeded 92% of the time and also spread
about half of the balls away from the intitial cluster. A typ-
ical state resulting from CueCard’s break is shown in figure
4.

Ball-in-hand shots, which occur after the opponent fouls,
differ from typical shots in that CueCard must first place the
cue ball on the table and then execute a shot. To accomplish
this CueCard generates interesting places to set the ball, typ-
ically close to an object ball and in position for a straight-in
shot. For each of these locations a shortened single level
search is performed. The shot with the highest overall score
is selected for execution, and the cue ball is placed in the
corresponding location.

Addressing Design Challenges
We return briefly to the design challenges mentioned ear-
lier. To resolve the issue of trading off depth and breadth
of search, we decided to have two levels of search, similar
to previous competitors, and also to increase the amount of
time we were able to spend exploring shots at each level.
This was done by distributing the shot generation, simula-
tion and evaluation over 20 computers and also by reim-
plementing and optimizing the physics. The reengineered
simulator ran approximately five times faster than the previ-
ous version. As stated earlier, to address the opponent we



Figure 5: How CueCard chooses a shot in typical situations

decided that for the tournament noise level we would only
consider the opponent in cases where no suitable shot ex-
isted. This situation occurred on less than 2% of shots.

Results
In the 2008 ICGA computational pool tournament CueCard
played against two opponents who have participated in pre-
vious competitions: PickPocket, written by Michael Smith,
(Smith 2007) and Elix, written by Marc Goddard. Pick-
Pocket was the champion of all previous competitions, and
was thus the state of the art as we began designing Cue-
Card. In the tournament, each agent played a 39 game match
against each other agent. CueCard won the tournament with
64 wins (in 78 games), compared to only 34 wins total by
PickPocket.

This was not enough games to statistically establish the
fact that CueCard was the superior agent, and so, after the
tournament, we ran more games between CueCard and Pick-
Pocket. In this later match, CueCard won 492-144 (77.4%),
clearly establishing that it is the better player.

Analyis of performance
After the success of the tournament, we were naturally faced
with many questions. Most notable was determining which
of our improvements helped the most towards our victory.
As we ran experiments to answer this question, we were
surprised by the results (Archibald, Altman, and Shoham
2009). Most surprising was that the additional computers
and reworked physics engine helped, but not very much. For
example, the 19 extra CPUs only helped CueCard to a 350-
282 (55.4%) victory in a match between the 20-CPU version
of CueCard and a single CPU version of CueCard. Game
specific tweaks, like the break shot, helped, but also didn’t

tell the whole story. This insight into how individual im-
provements did or did not contribute to CueCard’s success
is extremely valuable, and the results of these experiments
are still impacting the next generation of billiards agent.

Generalization
Another natural question was whether any general theory or
interesting observations could be extracted from the billiards
environment? Pool gives us a unique set of characteristics,
some of which are more clearly delineated than ever before.
This provides an opportunity to study the effects of some
of these characteristics on the interactions of agents within
this framework. The hope is that some generally applicable
principles can be gleaned from what is learned in the domain
of pool.

The first such characteristic that has been investigated as a
result of our foray into computational pool is that of execu-
tion precision. Adding noise to an agent’s shot in a game of
computational pool gives us a clear notion of a player’s ex-
ecution precision. We can modify this execution precision,
making an agent more precise or less so. The first question
we addressed was: How do changes in agents’ execution
precision impact the game? For example, could holding the
tournament with a different level of noise have lead to a dif-
ferent agent winning? Is there a “best” noise level at which
to hold the tournament?

We investigated these questions experimentally
(Archibald, Altman, and Shoham 2010b) using redesigned
client-server software. Using CueCard, as well as some
other agents that were designed to be of differing strategic
complexity, we ran many simulations to gain insight into
the way that different noise levels affected the agents. We
specifically examined how variations in the noise applied to
agents’ shots, and how the amount of time given the agents
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Figure 6: The impact of time and noise level on CueCard’s
performance

for computation impacted the agents’ win-off-the-break
percentages. Around 20,000 games were simulated for each
agent at randomly chosen noise values and time limits.
The noise was Gaussian with standard deviations varying
between zero and five times the 2008 tournament values.
Time limits were varied between one and six minutes per
agent per game. For each simulated game, we recorded
whether or not the agent won off the break. This raw
binary data was then smoothed to provide an estimate of
the win-off-the-break percentage for each agent at any
combination of noise level and time limit. A contour
plot showing the resulting win-off-the-break probability
estimates for CueCard is shown in figure 6.

One of the aspects we investigated was how much hav-
ing extra time helped the agents at each different noise level.
For CueCard, extra time always helped, but the amount that
it helped depended a lot upon the noise level. In figure 7 we
show a plot of the difference in win-off-the-break percent-
age between CueCard with six minutes and CueCard with
one minute for each noise level. The plot peaks at around
1.4 times the 2008 tournament noise level. If we consider an
agent with more time to be a more strategic and intelligent
agent, given that the agents are using the same high-level
strategy, this suggests that the presence of noise might in-
crease the chance of the most strategic agent winning.

This investigation naturally led to questions about the im-
pact that execution precision has on agent interaction in gen-
eral game settings. We proposed that execution precision
be modeled as a restriction on the set of distributions over
actions that an agent can utilize in a game (Archibald, Alt-
man, and Shoham 2010a). We showed that an agent’s safety
level in a game, or the amount that it can guarantee itself, re-
gardless of opponent, cannot decrease as its execution preci-
sion increases. However, when we look at the payoff that an
agent receives in a Nash equilibrium of the game, there are
cases where an agent would prefer to be have less execution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

Noise level

Di
ffe

re
nc

e 
in

 w
in
−o

ff−
th

e−
br

ea
k 

pe
rc

en
ta

ge

 

 
CC

Figure 7: Difference time makes to CueCard at different
noise levels

precision.

The future of computational pool
The work so far on computational pool has barely scratched
the surface of what this exciting new area has to offer, both
in terms of practical experience with software agents and
theoretical understanding and insight into unique features of
agent interaction.

To increase our understanding on the practical side of
things, future computational pool tournaments will branch
out from the format used so far, which has been 8-ball at
a single noise level. The first change we wish to make is to
have each tournament feature competitions at different noise
levels. As mentioned earlier, experiments have shown that
noise affects each agent differently. Holding competitions
at multiple noise levels would encourage exploration of new
agent strategies and approaches to computational pool. In
addition, there are many other settings to explore, including
asymmetric settings, where the agents have different noise
levels, settings where the exact noise level is only learned
at run time, or settings where the exact noise level is never
explicitly learned at all. We can also expand to other cue
sports, such as 9-ball, one-pocket and snooker. While the
underlying physics is identical in all variations, the different
rules for each game create different incentives for the agents
and could increase the value of modeling the opponent or
searching ahead in the game.

To facilitate easier administration of future tournaments
and to enable experimentation, a significant effort has been
made to redesign the physics simulator and the server and
client architecture to make the entire system more robust and
usable. The new server has a web interface which enables
easy administration of games, matches, and tournaments.
All of this code is available for download. The goal is to
lower the barrier to entry for new teams, allowing them to
quickly implement and test any ideas they have about how



to design effective billiards players.
The next computational pool championships are planned

for August 2011, to be held in conjunction with the
Twenty-Fifth AAAI Conference. The championships
will feature separate competitions at different noise lev-
els, allowing for innovation and new ideas, since new
strategies may be most effective at the new noise lev-
els. We invite you to visit our website for details
(http://billiards.stanford.edu), and join us
on this exciting journey.
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